cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163468 Indices k such that half of the k-th nonprime nonnegative integer is prime.

Original entry on oeis.org

3, 4, 7, 9, 15, 18, 24, 27, 33, 43, 45, 54, 61, 64, 71, 80, 89, 93, 103, 109, 113, 122, 129, 139, 151, 157, 161, 168, 172, 179, 201, 208, 217, 220, 237, 241, 250, 261, 268, 279, 288, 291, 308, 311, 318, 321, 341, 361, 368, 371, 377, 388, 391, 408, 418, 428, 440
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 28 2009

Keywords

Comments

Here k-th nonprime = A141468(k) (the k-th nonprime nonnegative integer).

Examples

			3 is a term because the 3rd nonprime nonnegative integer is 4, and 4/2 = 2 is prime.
4 is a term because the 4th nonprime nonnegative integer is 6, and 6/2 = 3 is prime.
7 is a term because the 7th nonprime nonnegative integer is 10, and 10/2 = 5 is prime.
		

Crossrefs

Programs

  • Maple
    A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: for n from 1 to 600 do npr := A141468(n) ; if type(npr,'even') then if isprime(npr/2) then printf("%d,",n) ; fi; fi; od: # R. J. Mathar, Aug 01 2009
  • Mathematica
    Flatten[Position[Select[Range[600],!PrimeQ[#]&],?(PrimeQ[#/2]&)]]+1 (* _Harvey P. Dale, May 05 2016 *)

Formula

a(n) = 2 + A065897(n). - R. J. Mathar, Aug 01 2009

Extensions

a(8) corrected by R. J. Mathar, Aug 01 2009
Edited by Jon E. Schoenfield, Mar 04 2019

A177997 p and A002808(p)/2 are both prime.

Original entry on oeis.org

2, 5, 7, 13, 31, 41, 43, 59, 101, 107, 127, 137, 149, 199, 239, 277, 359, 389, 479, 613, 743, 757, 809, 829, 937, 991, 1031, 1103, 1439, 1487, 1499, 1847, 1877, 2011, 2083, 2179, 2609, 2663, 2711, 2741, 2749, 2857, 2909, 3329, 3559, 3623, 3643, 3697, 3823
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 17 2010, May 23 2010

Keywords

Comments

Primes p such that composite(p) is an even semiprime.

Examples

			a(1)=2 because 2=prime and composite(2)/2=6/2=3=prime.
		

Crossrefs

Programs

  • Maple
    P,C:= selectremove(isprime, [$2..10000]):
    select(t -> t <= nops(C) and C[t]::even and isprime(C[t]/2), P); # Robert Israel, Mar 20 2018
  • PARI
    c=[]; for(n=2, 10000, if(!isprime(n), c=concat(c, n))); c; \\ The composites
    s=[]; forprime(p=2, #c, if(c[p]%2==0 && isprime(c[p]\2), s=concat(s, p))); s \\ Colin Barker, Jun 28 2014

Extensions

Corrected by D. S. McNeil and R. J. Mathar, May 23 2010
Showing 1-2 of 2 results.