cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065905 Integers i > 1 for which there are two primes p such that i is a solution mod p of x^4 = 2.

Original entry on oeis.org

5, 8, 16, 17, 18, 25, 27, 28, 30, 33, 34, 35, 36, 45, 46, 47, 51, 56, 57, 58, 63, 66, 67, 68, 69, 71, 76, 78, 81, 84, 86, 88, 90, 91, 92, 98, 102, 104, 105, 106, 107, 110, 112, 113, 114, 115, 117, 118, 120, 122, 123, 125, 126, 127, 131, 132, 133, 134, 135, 136, 137
Offset: 1

Views

Author

Klaus Brockhaus, Nov 28 2001

Keywords

Comments

Solutions mod p are represented by integers from 0 to p-1. The following equivalences holds for i > 1: There is a prime p such that i is a solution mod p of x^4 = 2 iff i^4 - 2 has a prime factor > i; i is a solution mod p of x^4 = 2 iff p is a prime factor of i^4 - 2 and p > i. i^4 - 2 has at most three prime factors > i. For i such that i^4 - 2 has no resp. one resp. three prime factors > i cf. A065903 resp. A065904 resp. A065906.

Examples

			a(3) = 16, since 16 is (after 5 and 8) the third integer i for which there are two primes p > i (viz. 31 and 151) such that i is a solution mod p of x^4 = 2, or equivalently, 16^4 - 2 = 65534 = 2*7*31*151 has two prime factors > 4. (cf. A065902).
		

Crossrefs

Programs

  • PARI
    a065905(m) = local(c,n,f,a,s,j); c = 0; n = 2; while(cn,s = concat(s,f[j,1]))); if(matsize(s)[2] == 2,print1(n,","); c++); n++)
    a065905(65)

Formula

a(n) = n-th integer i such that i^4 - 2 has two prime factors > i.