cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065916 Denominator of sigma(8*n^2)/sigma(4*n^2).

Original entry on oeis.org

7, 31, 7, 127, 7, 31, 7, 511, 7, 31, 7, 127, 7, 31, 7, 2047, 7, 31, 7, 127, 7, 31, 7, 511, 7, 31, 7, 127, 7, 31, 7, 8191, 7, 31, 7, 127, 7, 31, 7, 511, 7, 31, 7, 127, 7, 31, 7, 2047, 7, 31, 7, 127, 7, 31, 7, 511, 7, 31, 7, 127, 7, 31, 7, 32767, 7, 31, 7, 127, 7, 31, 7, 511, 7
Offset: 1

Views

Author

Labos Elemer, Nov 28 2001

Keywords

Comments

The sequence is not periodic. The denominators are always of the form -1+2^s.

Examples

			sigma(72)/sigma(36) = 15/7, so a(3) = 7.
		

Crossrefs

Cf. A000203, A007814, A028982, A065915 (numerators), A083420, A220466.

Programs

  • Maple
    nmax:=73: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2*4^(p+1) - 1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 12 2013
  • Mathematica
    a[n_] := 2^(2*IntegerExponent[n, 2] + 3) - 1; Array[a, 100] (* Amiram Eldar, Jun 21 2024 *)
  • PARI
    a(n) = denominator(sigma(8*n^2)/sigma(4*n^2)) \\ Harry J. Smith, Nov 04 2009
    
  • PARI
    a(n)=2^(2*valuation(n,2)+3)-1 \\ Charles R Greathouse IV, Nov 18 2015

Formula

From Johannes W. Meijer, Feb 12 2013: (Start)
a((2*n-1)*2^p) = 2*4^(p+1) - 1 for p >= 0 and n >= 1. Observe that a(2^p) = A083420(p+1).
a(2^(p+3)*n + 2^(p+2) - 1) = a(2^(p+2)*n + 2^(p+1) - 1) for p >= 0. (End)
a(n) = 2^s-1, with s = 2*A007814(n) + 3. Recurrence: a(2n) = 4a(n)+3, a(2n+1) = 7. - Ralf Stephan, Aug 22 2013