A065937 a(n) is the integer (reduced squarefree) under the square root obtained when the inverse of Minkowski's question mark function is applied to the n-th ratio A007305(n+1)/A047679(n-1) in the full Stern-Brocot tree and zero when it results a rational value.
0, 0, 0, 5, 5, 0, 0, 0, 2, 2, 0, 5, 5, 0, 0, 2, 3, 0, 3, 3, 0, 3, 2, 0, 2, 2, 0, 5, 5, 0, 0, 5, 13, 17, 2, 17, 37, 5, 13, 13, 5, 37, 17, 2, 17, 13, 5, 2, 3, 0, 3, 3, 0, 3, 2, 0, 2, 2, 0, 5, 5, 0, 0, 3, 17, 3, 37, 21, 13, 10, 37, 3, 401, 6, 13, 10, 401, 0, 17, 17, 0, 401, 10, 13, 6, 401, 3, 37
Offset: 1
Keywords
Examples
The first few values for this mapping are N2Q(1) = Inverse_of_MinkowskisQMark(1) = 1, N2Q(2) = Inverse_of_MinkowskisQMark(1/2) = 1/2, N2Q(3) = Inverse_of_MinkowskisQMark(2) = 2, N2Q(4) = Inverse_of_MinkowskisQMark(1/3) = (3-sqrt(5))/2, N2Q(5) = Inverse_of_MinkowskisQMark(2/3) = (sqrt(5)-1)/2, N2Q(6) = Inverse_of_MinkowskisQMark(3/2) = 3/2, N2Q(7) = Inverse_of_MinkowskisQMark(3) = 3, N2Q(8) = Inverse_of_MinkowskisQMark(1/4) = 1/3, N2Q(9) = Inverse_of_MinkowskisQMark(2/5) = sqrt(2)-1, N2Q(10) = Inverse_of_MinkowskisQMark(3/5) = 2-sqrt(2).
References
- J. H. Conway, On Numbers and Games, 2nd ed. Natick, MA: A. K. Peters, pp. 82-86 (First ed.), 2000.
Links
- Robert Hill, An article in sci.math newsgroup
- Eric Weisstein's World of Mathematics, Minkowski's Question Mark Function.
- Wikipedia, Minkowski's question mark function
- Index entries for sequences related to Minkowski's question mark function
- Index entries for sequences related to Stern's sequences
Programs
-
Maple
[seq(find_sqrt(N2Q(j)),j=1..512)]; N2Q := n -> Inverse_of_MinkowskisQMark(A007305(m+1)/A047679(m-1)); Inverse_of_MinkowskisQMark := proc(r) local x,y,b,d,k,s,i,q; x := numer(r); y := denom(r); if(1 = y) then RETURN(x/y); fi; if(2 = y) then RETURN(x/y); fi; b := []; d := []; k := 0; s := 0; i := 0; while(x <> 0) do q := floor(x/y); if(i > 0) then b := [op(b),q]; d := [op(d),x]; fi; x := 2*(x-(q*y)); if(member(x,d,'k') and (k > 1) and (b[k] <> b[k-1]) and (q <> floor(x/y))) then s := eval_periodic_confrac_tail(list2runcounts(b[k..nops(b)])); b := b[1..(k-1)]; break; fi; i := i+1; od; if(0 = k) then b := b[1..(nops(b)-1)]; b := [op(b),b[nops(b)]]; fi; RETURN(factor(eval_confrac([floor(r),op(list2runcounts([0,op(b)]))],s))); end; eval_confrac := proc(c,z) local x,i; x := z; for i in reverse(c) do x := (`if`((0=x),x,(1/x)))+i; od; RETURN(x); end; eval_periodic_confrac_tail := proc(c) local x,i,u,r; x := (eval_confrac(c,u) - u) = 0; r := [solve(x,u)]; RETURN(max(r[1],r[2])); end; # Note: I am not sure if the larger root is always the correct one for the inverse of Minkowski's question mark function. However, whichever root we take, it does not change this sequence, as the integer under the square root is same in both cases. - Antti Karttunen, Aug 26 2006 list2runcounts := proc(b) local a,p,y,c; if(0 = nops(b)) then RETURN([]); fi; a := []; c := 0; p := b[1]; for y in b do if(y <> p) then a := [op(a),c]; c := 0; p := y; fi; c := c+1; od; RETURN([op(a),c]); end; find_sqrt := proc(x) local n,i,y; n := nops(x); if(n < 2) then RETURN(0); fi; if((2 = n) and (`^` = op(0,x)) and (1/2 = op(2,x))) then RETURN(op(1,x)); else for i from 0 to n do y := find_sqrt(op(i,x)); if(y <> 0) then RETURN(y); fi; od; RETURN(0); fi; end; # This returns an integer under the square-root expression in Maple.
Extensions
Description clarified by Antti Karttunen, Aug 26 2006
Comments