cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A065931 Triangle of coefficients of Bessel polynomials {y_n(x)}'.

Original entry on oeis.org

1, 3, 6, 6, 30, 45, 10, 90, 315, 420, 15, 210, 1260, 3780, 4725, 21, 420, 3780, 18900, 51975, 62370, 28, 756, 9450, 69300, 311850, 810810, 945945, 36, 1260, 20790, 207900, 1351350, 5675670, 14189175, 16216200, 45, 1980, 41580, 540540, 4729725, 28378350, 113513400, 275675400, 310134825
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Examples

			For n = 1 .. 4 the polynomials are
  (y_{1}(x))' =  1;
  (y_{2}(x))' =  3 +  6*x;
  (y_{3}(x))' =  6 + 30*x +  45*x^2;
  (y_{4}(x))' = 10 + 90*x + 315*x^2 + 420*x^3.
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Programs

  • GAP
    f:=Factorial;; Flat(List([1..12], n-> List([0..n-1], k-> (f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) ))); # G. C. Greubel, Jul 10 2019
  • Magma
    f:=Factorial; [(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jul 10 2019
    
  • Mathematica
    Table[(n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    for(n=1,12, for(k=0,n-1, print1((n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), ", "))) \\ G. C. Greubel, Jul 10 2019
    
  • Sage
    f=factorial; [[(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Jul 10 2019
    

Formula

From G. C. Greubel, Jul 10 2019: (Start)
(y_{n}(x))' = (1/2)*Sum_{k=0..n-1} ((n+k+1)!/(k!*(n-k-1)!))*(x/2)^k.
T(n, k) = ((n+k+1)!/(k!*(n-k-1)!))*(1/2)^(k+1) for 0 <= k <= n-1, n>=1. (End)
Showing 1-1 of 1 results.