A065980 Inverse binomial transform of [1^1,2^2,3^3,...], shifted right by one index.
1, 3, 20, 186, 2248, 33340, 585744, 11891236, 273854368, 7053523236, 200894140120, 6268924259884, 212691682554960, 7795165961244532, 306908654169113416, 12918649608270463740, 578931362074039774144
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- F. Ellermann, Illustration of binomial transforms
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
CoefficientList[Series[-E^(-x)*LambertW[-x]/(1+LambertW[-x])^3/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 17 2014 *)
-
PARI
a(n)=if(n<1,0,(n-1)!*polcoeff(exp(-x+O(x^n))*sum(k=0,n-1,(k+1)^(k+1)*x^k/k!),n-1))
Formula
O.g.f.: Sum_{n>0} (n*x/(1+x))^n. E.g.f.: int(-exp(-x)*LambertW(-x)/(1+LambertW(-x))^3/x, x). - Vladeta Jovovic, Apr 12 2003
a(n) ~ n^n * exp(-exp(-1)). - Vaclav Kotesovec, Feb 17 2014
Comments