A066067 Number of binary strings u of any length with property that length(u) + number of 0's in u <= n (only one of a string and its reversal are counted).
1, 2, 3, 6, 10, 18, 29, 49, 78, 128, 203, 329, 523, 844, 1347, 2172, 3480, 5614, 9023, 14567, 23466, 37910, 61165, 98865, 159677, 258190, 417283, 674890, 1091214, 1765146, 2854793, 4618373, 7470614, 12086436, 19552903, 31635193, 51181367, 82809832
Offset: 1
Keywords
Examples
a(3) = 3: 0 01 111 (e.g. 01: length 2 + 1 zero = 3). a(4) = 6: 0 01 00 011 101 1111. a(5) =10: 0 01 00 011 101 001 010 0111 1011 11111.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-4,4,-2,1,1,-1)
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[x (-x^7-x^4+3x^3-2x^2-x+1)/((1-x-x^2) (1-x^2-x^4) (1-x)^2),{x,0,50}],x] (* Harvey P. Dale, Jun 15 2011 *)
Formula
G.f.: x*(-x^7-x^4+3x^3-2x^2-x+1)/((1-x-x^2)*(1-x^2-x^4)*(1-x)^2).
Extensions
More terms from Harvey P. Dale, Jun 15 2011
Comments