cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066067 Number of binary strings u of any length with property that length(u) + number of 0's in u <= n (only one of a string and its reversal are counted).

Original entry on oeis.org

1, 2, 3, 6, 10, 18, 29, 49, 78, 128, 203, 329, 523, 844, 1347, 2172, 3480, 5614, 9023, 14567, 23466, 37910, 61165, 98865, 159677, 258190, 417283, 674890, 1091214, 1765146, 2854793, 4618373, 7470614, 12086436, 19552903, 31635193, 51181367, 82809832
Offset: 1

Views

Author

Frank Ellermann, Dec 02 2001

Keywords

Comments

If 0 is replaced by 2 (as in A007931) "length + 0-bits" is simply the total of ternary digits (e.g., 3 for 21 instead of 01).

Examples

			a(3) = 3: 0 01 111 (e.g. 01: length 2 + 1 zero = 3).
a(4) = 6: 0 01 00 011 101 1111.
a(5) =10: 0 01 00 011 101 001 010 0111 1011 11111.
		

Crossrefs

If reversals are counted as distinct then we obtain A000126.
A007931 (binary strings represented by ternary numbers),
Cf. A035615 (binary "same game").

Programs

  • Mathematica
    CoefficientList[Series[x (-x^7-x^4+3x^3-2x^2-x+1)/((1-x-x^2) (1-x^2-x^4) (1-x)^2),{x,0,50}],x] (* Harvey P. Dale, Jun 15 2011 *)

Formula

G.f.: x*(-x^7-x^4+3x^3-2x^2-x+1)/((1-x-x^2)*(1-x^2-x^4)*(1-x)^2).

Extensions

More terms from Harvey P. Dale, Jun 15 2011