cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066085 Orders of non-supersolvable groups.

Original entry on oeis.org

12, 24, 36, 48, 56, 60, 72, 75, 80, 84, 96, 108, 112, 120, 132, 144, 150, 156, 160, 168, 180, 192, 196, 200, 204, 216, 224, 225, 228, 240, 252, 264, 276, 280, 288, 294, 300, 312, 320, 324, 336, 348, 351, 360, 363, 372, 375, 384, 392, 396, 400, 405, 408, 420
Offset: 1

Views

Author

Reiner Martin, Dec 29 2001

Keywords

Comments

A finite group is supersolvable if it has a normal series with cyclic factors. Huppert showed that a finite group is supersolvable iff the index of any maximal subgroup is prime.
All multiples of non-supersolvable orders are non-supersolvable orders. - Des MacHale, Dec 22 2003

Examples

			a(1)=12 is in the sequence since the alternating group on 4 elements is the smallest group which is not supersolvable.
		

Crossrefs

For primitive terms see A340517.

Extensions

More terms from Des MacHale, Dec 22 2003