cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066094 Type D Eulerian triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 11, 11, 1, 1, 44, 102, 44, 1, 1, 157, 802, 802, 157, 1, 1, 530, 5551, 10876, 5551, 530, 1, 1, 1731, 35121, 124427, 124427, 35121, 1731, 1, 1, 5528, 208732, 1265704, 2201030, 1265704, 208732, 5528, 1
Offset: 0

Views

Author

Paul Boddington, Mar 05 2003

Keywords

Comments

Let n >= 2 and write the polynomial D(n,0)+D(n,1)*x+...+D(n,n)*x^n as a polynomial in y := x-1. Then the coefficient of y^r is the number of cells of dimension n-r in the cellular decomposition of a Euclidean space containing a root system of type D_n. If n >= 2 then the corresponding row sum is 2^(n-1)*n!, while Sum_{k=0..n} 2^k*D(n,k) is given by sequence A080254. [Row sum formula corrected by Joshua Swanson, Jul 12 2022]
The entries in row n (for n >= 2) are the components of the h-vector of the permutohedra of type D_n. See A145902 for the corresponding array of f-vectors for type D permutohedra. [Peter Bala, Oct 29 2008]

Examples

			From _Peter Bala_, Oct 29 2008: (Start)
The triangle begins
n\k|..0....1....2....3....4....5
================================
0..|..1
1..|..1....1
2..|..1....2....1
3..|..1...11...11....1
4..|..1...44..102...44....1
5..|..1..157..802..802..157....1
...
(End)
		

References

  • K. S. Brown, Buildings, Springer-Verlag, 1988
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 11.

Crossrefs

Cf. A145902. [Peter Bala, Oct 29 2008]

Formula

Let D(n, k) denote the (k+1)st entry in the (n+1)st row and let A(n, k), B(n, k) be triangles A008292 (The Eulerian triangle), A060187 respectively. Then D(n, k) = B(n, k)-2^(n-1)*n*A(n-2, k-1).
Chow gives complicated recurrences and generating functions.
E.g.f.: [(1-x)*exp(z*(1-x)) - z*x*(1-x)*exp(2*z*(1-x))]/(1 - x*exp(2*z*(1-x))) = 1 + x*z + (1 + 2*x + x^2)*z^2/2! + (1 + 11*x + 11*x^2 + x^3)*z^3/3! + ... . [Peter Bala, Oct 29 2008]