A066094 Type D Eulerian triangle.
1, 1, 1, 1, 2, 1, 1, 11, 11, 1, 1, 44, 102, 44, 1, 1, 157, 802, 802, 157, 1, 1, 530, 5551, 10876, 5551, 530, 1, 1, 1731, 35121, 124427, 124427, 35121, 1731, 1, 1, 5528, 208732, 1265704, 2201030, 1265704, 208732, 5528, 1
Offset: 0
Examples
From _Peter Bala_, Oct 29 2008: (Start) The triangle begins n\k|..0....1....2....3....4....5 ================================ 0..|..1 1..|..1....1 2..|..1....2....1 3..|..1...11...11....1 4..|..1...44..102...44....1 5..|..1..157..802..802..157....1 ... (End)
References
- K. S. Brown, Buildings, Springer-Verlag, 1988
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 11.
Links
- Jose Bastidas, Table of n, a(n) for n = 0..1274 (First 50 rows)
- Anna Borowiec and Wojciech Mlotkowski, New Eulerian numbers of type D, arXiv:1509.03758 [math.CO], 2015.
- Chak-On Chow, On the Eulerian polynomials of type D, arXiv:math/0201140 [math.CO], 2002.
- Nolan J. Coble and Alexander Barg, Classical and quantum Coxeter codes: Extending the Reed-Muller family, arXiv:2502.14746 [cs.IT], 2025. See p. 7.
- Shi-Mei Ma, Polynomials with only real zeros and the Eulerian polynomials of type D, arXiv preprint arXiv:1205.6242 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 23 2012
Crossrefs
Cf. A145902. [Peter Bala, Oct 29 2008]
Formula
Let D(n, k) denote the (k+1)st entry in the (n+1)st row and let A(n, k), B(n, k) be triangles A008292 (The Eulerian triangle), A060187 respectively. Then D(n, k) = B(n, k)-2^(n-1)*n*A(n-2, k-1).
Chow gives complicated recurrences and generating functions.
E.g.f.: [(1-x)*exp(z*(1-x)) - z*x*(1-x)*exp(2*z*(1-x))]/(1 - x*exp(2*z*(1-x))) = 1 + x*z + (1 + 2*x + x^2)*z^2/2! + (1 + 11*x + 11*x^2 + x^3)*z^3/3! + ... . [Peter Bala, Oct 29 2008]
Comments