A066170 Triangle read by rows: T(n,k) = (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k), 0 <= k <= n, n >= 0.
1, -1, 1, 1, -1, -1, -1, 2, 1, -1, 1, -2, -3, 1, 1, -1, 3, 3, -4, -1, 1, 1, -3, -6, 4, 5, -1, -1, -1, 4, 6, -10, -5, 6, 1, -1, 1, -4, -10, 10, 15, -6, -7, 1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, 1, -5, -15, 20, 35, -21, -28, 8, 9, -1, -1, -1, 6, 15, -35, -35, 56, 28, -36, -9, 10, 1, -1, 1, -6, -21, 35, 70, -56, -84, 36, 45, -10, -11
Offset: 0
Examples
The table begins {1}; {-1, 1}; {1, -1, -1}; {-1, 2, 1, -1}; ... The characteristic function of ( 1 1 1 ) ( 1 1 0 ) ( 1 0 0 ) is f(x) = x^3 - 2x^2 - x + 1, so the 3rd row is (-1)^3 times the f(x) coefficients, i.e., {-1; 2; 1; -1}.
References
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001 (Chapter 14)
Links
- Indranil Ghosh, Rows 0..125, flattened
- Henry W. Gould, A Variant of Pascal's Triangle, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, pp. 257-271, with corrections.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
Programs
-
Maple
A066170 := proc(n,k): (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k) end: seq(seq(A066170(n,k),k=0..n), n=0..11); // Johannes W. Meijer, Aug 08 2011
-
Mathematica
Flatten[Table[(-1)^n*(-1)^Floor[3*k/2]*Binomial[Floor[(n+k)/2],k],{n,0,12}, {k,0,n}]] (* Indranil Ghosh, Feb 19 2017 *)
Formula
From L. Edson Jeffery, Mar 23 2011: (Start)
T(n,k) = (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k);
T(n,k) = (-1)^n*A187660(n,k). (End)
From Johannes W. Meijer, Aug 08 2011: (Start)
abs(T(n,n-k)) = A065941(n,k). (End)
Extensions
More terms from Vladeta Jovovic, Jan 02 2002
Corrected and edited by Johannes W. Meijer, Aug 08 2011
Comments