A066192 Composite numbers k such that the sum of the odd aliquot parts of k divides k.
4, 8, 12, 16, 24, 32, 48, 56, 64, 96, 112, 120, 128, 192, 224, 240, 256, 384, 448, 480, 512, 528, 672, 768, 896, 960, 992, 1024, 1056, 1344, 1456, 1536, 1792, 1920, 1984, 2048, 2112, 2160, 2208, 2688, 2912, 3072, 3584, 3840, 3968, 4096, 4224, 4320, 4416
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..4905 (terms below 10^11; terms 1..1000 from Harry J. Smith)
- Index entries for sequences where any odd perfect numbers must occur.
Programs
-
Mathematica
Do[ d = Drop[ Divisors[ n ], -1 ]; l = Length[ d ]; od = 1; k = 2; While[ k <= l, If[ OddQ[ d[ [ k ] ] ], od = od + d[ [ k ] ] ]; k++ ]; If[ !PrimeQ[ n ] && IntegerQ[ n/od ], Print[ n ] ], {n, 2, 10^4} ] Select[Range[4500], CompositeQ[#] && Divisible[#, DivisorSigma[1, #/2^IntegerExponent[#, 2]] - If[OddQ[#], #, 0]] &] (* Amiram Eldar, Apr 27 2025 *)
-
PARI
{ n=0; for (m=4, 10^9, if (isprime(m), next); d=divisors(m); s=1; for (i=2, numdiv(m) - 1, if (d[i]%2, s += d[i])); if (s > 0 && m%s == 0, write("b066192.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 05 2010
-
PARI
isok(k) = if(k == 1, 0, !isprime(k) && !(k % (sigma(k >> valuation(k, 2)) - if(k%2, k)))); \\ Amiram Eldar, Apr 27 2025
Comments