A066239 The floor(1.001*x)-perfect numbers, where f-perfect numbers for an arithmetical function f are defined in A066218.
6, 28, 496, 32445, 130304, 388076, 199272950
Offset: 1
Examples
Let f(n) = floor(1.001*n). Then f(6) = 6 = 3+2+1 = f(3)+f(2)+f(1); so 6 is a term of the sequence.
Links
- J. Pe, On a Generalization of Perfect Numbers, J. Rec. Math., 31(3) (2002-2003), 168-172.
Crossrefs
Cf. A066218.
Programs
-
Mathematica
f[x_] := Floor[1.001*x]; Select[ Range[1, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]
Extensions
a(5)-a(7) from Amiram Eldar, Sep 26 2019
Comments