A066277 Primes p(m) such that a prime number q exists so that p(m)-q = c(m), the m-th composite number.
2, 3, 5, 7, 17, 23, 29, 31, 41, 43, 67, 89, 97, 131, 139, 157, 281, 311, 313, 331, 353, 379, 401, 431, 449, 499, 569, 571, 607, 631, 683, 733, 743, 751, 787, 829, 881, 883, 947, 967, 983, 1033, 1091, 1117, 1123, 1151, 1301, 1303, 1327, 1373, 1543, 1559
Offset: 1
Keywords
Examples
p(25) = A000040(25) = 97; 97 - 61 = A002808(25) = c(25) = 38 and 61 is prime.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Composite[n_Integer] := FixedPoint[n + PrimePi@# +1 &, n + PrimePi@n +1]; fQ[n_] := PrimeQ[Prime@n - Composite@n]; Prime@ Select[ Range@250, fQ] (* Robert G. Wilson v, Dec 11 2017 *)
Comments