A066291 Numbers m such that DivisorSigma(8*k-4, m) mod m = 0 holds presumably for all k; that is, (8*k-4)-power-sums of divisors of m are divisible by m for all k.
1, 34, 492, 5617, 11234, 22468, 67404, 190978, 709937, 763912, 1419874, 2839748, 5073996, 5446841, 7914353, 8519244, 10893682, 11548552, 15828706, 17126233, 21787364, 31657412, 34252466, 43574728, 57928121, 63314824, 65362092, 68504932, 73084632, 94972236
Offset: 1
Keywords
Examples
Tested for each m with k < 200. Tested for each m with k < 500. - _Sean A. Irvine_, Oct 07 2023
Programs
-
Mathematica
Table[Union[Table[ IntegerQ[DivisorSigma[8*k-4, Part[t, m]]/Part[t, m]], {k, 1, 200}]], {m, 1, Length[t]}]; where t denotes the table of sequence.
Formula
DivisorSigma(8*k-4, m)/m is an integer for k = 1, 2, 3, ..., 200, ...
Extensions
More terms from Sean A. Irvine, Oct 07 2023