cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066320 Triangle read by rows: T(n, k) = binomial(n, k)*k^k*(n-k)^(n-k-1) k=0..n-1.

Original entry on oeis.org

1, 2, 2, 9, 6, 12, 64, 36, 48, 108, 625, 320, 360, 540, 1280, 7776, 3750, 3840, 4860, 7680, 18750, 117649, 54432, 52500, 60480, 80640, 131250, 326592, 2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344, 43046721
Offset: 1

Views

Author

Christian G. Bower, Dec 13 2001

Keywords

Examples

			Triangle starts:
  [1][      1]
  [2][      2,      2]
  [3][      9,      6,     12]
  [4][     64,     36,     48,    108]
  [5][    625,    320,    360,    540,    1280]
  [6][   7776,   3750,   3840,   4860,    7680,   18750]
  [7][ 117649,  54432,  52500,  60480,   80640,  131250,  326592]
  [8][2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344]
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 68 (2.1.43).

Crossrefs

T = n * A185390 after proper alignment of offsets.
Columns 1, 2: A000169, A055541.
Main diagonal: A055897.
Row sums give A000312.

Programs

  • Julia
    # Assuming offset (n=1, k=1).
    T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k-1)
    for n in 1:9 (println([n], [T(n, k) for k in 1:n])) end
    # Peter Luschny, Jan 12 2024

Formula

E.g.f.: -LambertW(-y)/(1+LambertW(-x*y)). - Vladeta Jovovic, Jan 26 2006
T(n, k) = n*binomial(n-1, k-1)*(k-1)^(k-1)*(n-k+1)^(n-k-1) assuming offset (1, 1). - Peter Luschny, Jan 12 2024