A066320 Triangle read by rows: T(n, k) = binomial(n, k)*k^k*(n-k)^(n-k-1) k=0..n-1.
1, 2, 2, 9, 6, 12, 64, 36, 48, 108, 625, 320, 360, 540, 1280, 7776, 3750, 3840, 4860, 7680, 18750, 117649, 54432, 52500, 60480, 80640, 131250, 326592, 2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344, 43046721
Offset: 1
Examples
Triangle starts: [1][ 1] [2][ 2, 2] [3][ 9, 6, 12] [4][ 64, 36, 48, 108] [5][ 625, 320, 360, 540, 1280] [6][ 7776, 3750, 3840, 4860, 7680, 18750] [7][ 117649, 54432, 52500, 60480, 80640, 131250, 326592] [8][2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344]
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 68 (2.1.43).
Crossrefs
Programs
-
Julia
# Assuming offset (n=1, k=1). T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k-1) for n in 1:9 (println([n], [T(n, k) for k in 1:n])) end # Peter Luschny, Jan 12 2024
Formula
E.g.f.: -LambertW(-y)/(1+LambertW(-x*y)). - Vladeta Jovovic, Jan 26 2006
T(n, k) = n*binomial(n-1, k-1)*(k-1)^(k-1)*(n-k+1)^(n-k-1) assuming offset (1, 1). - Peter Luschny, Jan 12 2024