cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066327 Binary string which equals n when 1's, 2's, 4's and 8's bits have weights -1, 1, 3, 6 respectively, while the other bits have their usual weights. -1 if no such string exists.

Original entry on oeis.org

0, 10, 101, 100, 110, 1001, 1000, 1010, 1101, 1100, 1110, -1, -1, -1, -1, 10001, 10000, 10010, 10101, 10100, 10110, 11001, 11000, 11010, 11101, 11100, 11110, -1, -1, -1, -1, 100001, 100000, 100010, 100101, 100100, 100110, 101001, 101000, 101010, 101101, 101100, 101110, -1, -1, -1, -1, 110001
Offset: 0

Views

Author

George E. Antoniou, Dec 15 2001

Keywords

Comments

After a(10), the pattern seems to be sequences of sixteen a(n), four of which without solution, then 12 formed by placing a member of the binary sequence 1,10,11,11,100,101 etc. in front of re-occurring list of the same 12 4-digit numbers. The description does not lead to a unique sequence: a(0)=0 and a(0)=11 are both valid. a(3)=111 and a(3)=100 are both valid. - R. J. Mathar, Mar 14 2006

References

  • John M, Yarbough, Digital Logic Applications and Design, West Publishing, 1997. p. 25

Crossrefs

Cf. A066335.

Programs

  • PARI
    dig(n,digno,base) = { local(nshif) ; nshif=n ; for(shifr=0,digno-1, nshif = floor(nshif/base) ) ; nshif % base ; } binrep(n) = { local(nshif,resul) ; nshif=n; resul = Str(dig(nshif,0,2)) ; nshif=floor(nshif/2) ; while (nshif != 0, resul = concat(Str(dig(nshif,0,2)),resul) ; nshif=floor(nshif/2) ; ) ; return(resul) ; } modN(n) = { local(resul) ; resul = 16*floor(n/16) ; resul += -1*dig(n,0,2) ; resul += 1*dig(n,1,2) ; resul += 3*dig(n,2,2) ; resul += 6*dig(n,3,2) ; return(resul) ; } { for (n = 0, 60, for(an =0, 1000, if( modN(an) == n, anS = binrep(an) ; print1(anS,",") ; break ; ) ; if( an==1000, print("-1,") ); ) ; ) } - R. J. Mathar, Mar 14 2006

Extensions

More terms from R. J. Mathar, Mar 14 2006