cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066340 Fermat's triangle: T(n,m) = m^phi(n) mod n; n >= 2; 1 <= m <= n-1, where phi is Euler's totient function.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 6, 1, 6, 5, 6, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 8, 1, 8, 7, 8, 1, 8, 1, 8, 1, 1, 1, 6, 1, 10, 6, 1, 1, 6, 10, 1, 6, 1, 1
Offset: 2

Views

Author

Wouter Meeussen, Jan 01 2002

Keywords

Comments

Fermat's little theorem states that T(n,m)=1 for all m relatively prime to n.

Examples

			Triangle begins:
1;
1, 1;
1, 0, 1;
1, 1, 1, 1;
1, 4, 3, 4,  1;
1, 1, 1, 1,  1, 1;
1, 0, 1, 0,  1, 0, 1;
1, 1, 0, 1,  1, 0, 1, 1;
1, 6, 1, 6,  5, 6, 1, 6, 1;
1, 1, 1, 1,  1, 1, 1, 1, 1,  1;
1, 4, 9, 4,  1, 0, 1, 4, 9,  4, 1;
1, 1, 1, 1,  1, 1, 1, 1, 1,  1, 1, 1;
1, 8, 1, 8,  1, 8, 7, 8, 1,  8, 1, 8, 1;
1, 1, 6, 1, 10, 6, 1, 1, 6, 10, 1, 6, 1, 1;
		

Crossrefs

Cf. A000010.

Programs

  • Mathematica
    Table[PowerMod[ #, EulerPhi[n], n]&/@ Range[n-1], {n, 2, 32} ]
  • PARI
    T(n,k) = lift(Mod(k, n)^eulerphi(n));
    tabl(nn) = for (n=2, nn, for (k=1, n-1, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 13 2019