A066709 Triangle T(r,c) of winning binary "same game" templates.
1, 0, 1, 1, 2, 1, 0, 2, 4, 1, 1, 5, 8, 5, 1, 0, 3, 14, 15, 6, 1, 1, 9, 25, 32, 21, 7, 1, 0, 4, 32, 62, 56, 28, 8, 1, 1, 14, 56, 109, 122, 84, 36, 9, 1, 0, 5, 60, 170, 242, 210, 120, 45, 10, 1, 1, 20, 105, 275, 436, 457, 330, 165, 55, 11, 1, 0, 6, 100, 375, 732, 912, 792, 495, 220, 66, 12, 1
Offset: 1
Examples
Rows: 1; 0,1; 1,2,1; 0,2,4,1; 1,5,8,5,1; 0,3,14,15,6,1; ... a(17) = T(6,2) = 3 winning templates with length 6 and total 8 = 6+2: 211211, 121121, 112112. A035615(6) = 2*( 1*1+0*1+1*3+1*1+2*2+1*1+1*1+0*1+2*1+1*1 ) = 2*13 = 26.
Links
- Sean A. Irvine, Java program (github)
Formula
A035615(n) = 2 * Sum_{r=1..n-1, c=1..min(r,n-r)} T(r,c) * P(n-r,c) where P(n-r,c) = C(n-r-1,c-1) = (n-r-1)!/((n-r-c-2)!*(c-1)!).
Extensions
More terms from Sean A. Irvine, Nov 03 2023
Comments