cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066351 Bisection of A007059.

Original entry on oeis.org

1, 2, 5, 14, 43, 140, 472, 1628, 5719, 20388, 73562, 268066, 984911, 3643570, 13557020, 50691978, 190353370, 717457656, 2713061899, 10289600164, 39127877886, 149147692734, 569767908076, 2180978471298, 8363866011929, 32129445138352, 123618810558184
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2001

Keywords

References

  • R. Kemp, Balanced ordered trees, Random Structures and Algorithms, 5, 1994, 99-121.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          `if`(m=0, add(b(n-j, j), j=1..n),
          add(b(n-j, min(n-j, m)), j=1..min(n, m))))
        end:
    a:= n-> b(2*n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, May 13 2014
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0, Sum[b[n - j, j], {j, 1, n} ], Sum[b[n - j, Min[n - j, m]], {j, 1, Min[n, m]}]]]; a[n_] := b[2*n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

Conjecture: a(n) ~ 0.721... * 4^n / n. - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Emeric Deutsch, Jun 10 2004