A066351 Bisection of A007059.
1, 2, 5, 14, 43, 140, 472, 1628, 5719, 20388, 73562, 268066, 984911, 3643570, 13557020, 50691978, 190353370, 717457656, 2713061899, 10289600164, 39127877886, 149147692734, 569767908076, 2180978471298, 8363866011929, 32129445138352, 123618810558184
Offset: 0
References
- R. Kemp, Balanced ordered trees, Random Structures and Algorithms, 5, 1994, 99-121.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, `if`(m=0, add(b(n-j, j), j=1..n), add(b(n-j, min(n-j, m)), j=1..min(n, m)))) end: a:= n-> b(2*n, 0): seq(a(n), n=0..40); # Alois P. Heinz, May 13 2014
-
Mathematica
b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0, Sum[b[n - j, j], {j, 1, n} ], Sum[b[n - j, Min[n - j, m]], {j, 1, Min[n, m]}]]]; a[n_] := b[2*n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
Formula
Conjecture: a(n) ~ 0.721... * 4^n / n. - Vaclav Kotesovec, Aug 25 2014
Extensions
More terms from Emeric Deutsch, Jun 10 2004