A066352 Pillai sequence: a(n) is the smallest term in A007924 requiring n primes.
0, 1, 4, 27, 1354, 401429925999155061
Offset: 0
Examples
The greatest prime <= 27 is 23; the greatest prime <= 27-23 is 3; 27-23-3 = 1, so the Pillai representation of 27 is 23+3+1, which uses more terms than all preceding numbers.
References
- S. S. Pillai, "An arithmetical function concerning primes", Annamalai University Journal (1930), pp. 159-167.
Links
- Florian Luca and Ravindranathan Thangadurai, On an arithmetic function considered by Pillai, Journal de théorie des nombres de Bordeaux 21:3 (2009), pp. 695-701.
- M. T. Marcos, Smarandache Prime Base representation, prime puzzle 141.
- Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]
- S. S. Pillai, On an Arithmetic Function concerning Primes, Journal Of The Annamalai University, Vol-1 (1932), pp. 159-167 (pages 204-212 in pdf).
Crossrefs
Cf. A007924.
Programs
-
PARI
A072491(n)=if(n<4,n>0,1+A072491(n-precprime(n))) print1(r=0);for(n=1,1e7,if(A072491(n)>r,r=a(n);print1(", "n))) \\ Charles R Greathouse IV, Feb 04 2013
Formula
a(n) = 2*p(m) - p(m-1) with minimal m = pi(a(n)) so that p(m) = a(n-1) + p(m-1), where p(n) is A008578(n).
Extensions
Edited by Charles R Greathouse IV, Oct 28 2009
Entry rewritten by Charles R Greathouse IV, Aug 28 2010
Comments