A066600 Sum of the digits in the n-th row of Pascal's triangle.
1, 2, 4, 8, 16, 14, 28, 38, 67, 80, 43, 86, 127, 164, 94, 152, 178, 248, 298, 362, 337, 332, 385, 446, 451, 398, 499, 602, 574, 698, 703, 794, 805, 854, 1015, 1040, 1135, 1226, 1201, 1286, 1330, 1400, 1531, 1640, 1687, 1754, 1861, 2102, 2161, 2450, 2074
Offset: 0
Examples
The 7th row in Pascal's triangle is 1, 7, 21, 35, 35, 21, 7, 1 and the sum of the digits is 38 hence a(7) = 38.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
f[n_] := Block[{m = s = 0}, While[m < n + 1, s = s + Apply[ Plus, IntegerDigits[ Binomial[n, m]]]; m++ ]; Return[s]]; Table[ f[n], {n, 0, 50}]
-
PARI
a(n)={vecsum([sumdigits(x) | x<-binomial(n)])} \\ Harry J. Smith, Mar 08 2010
Extensions
Corrected and extended by Robert G. Wilson v, Dec 28 2001
Offset changed from 1 to 0 by Harry J. Smith, Mar 08 2010