A066635 Distance from n to closest square different from n.
1, 1, 1, 3, 1, 2, 2, 1, 5, 1, 2, 3, 3, 2, 1, 7, 1, 2, 3, 4, 4, 3, 2, 1, 9, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 11, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 13, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 15, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 17, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 19, 1, 2
Offset: 1
Examples
a(11) = 2 as 11 is closer to 9 than to 16 and 11 - 9 = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10: # to get a(1)..a((N+1)^2-1) seq(op([m^2-(m-1)^2, seq(i-m^2,i=m^2+1..m^2+m),seq((m+1)^2-i,i=m^2+m+1..(m+1)^2-1)]),m=1..N); # Robert Israel, Nov 07 2017
-
Mathematica
dncls[n_]:=If[IntegerQ[Sqrt[n]],Min[n-(Sqrt[n]-1)^2,(Sqrt[n]+1)^2-n],Min[n-Floor[Sqrt[n]]^2,Ceiling[Sqrt[n]]^2-n]]; Array[dncls,120] (* Harvey P. Dale, Dec 20 2024 *)
Formula
a(n) = Min {n - floor(sqrt(n))^2, (floor(sqrt(n))+1)^2 - n} if n is not a square. a(n) = 2*sqrt(n) - 1 if n is a square.
G.f.: -x^2/(1-x)^2 + Sum_{m>=1} x^(m^2)*(2m - x^m*(x+x^2)/(1-x)^2 -(1-4*x+x^2)/(1-x)^2). - Robert Israel, Nov 07 2017
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 03 2002
Comments