cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066676 Smallest number m such that phi(m) is a multiple of n-th primorial number, the product of first n primes.

Original entry on oeis.org

3, 7, 31, 211, 2311, 60653, 1023053, 19417793, 446235509, 12939711677, 200560490131, 14841484883609, 608500576478849, 26165522997357677, 1229779567395958169, 65178316970529225209, 3845520700432469775917, 234576762719782814756597, 15716643102168462956621849
Offset: 1

Views

Author

Labos Elemer, Dec 19 2001

Keywords

Examples

			n = 8: a(8) = 19417793, phi(a(8)) = 19199380 = 2*9699690 = 2*2*3*5*7*11*13*17*19.
		

Crossrefs

Programs

  • Mathematica
    nmax = 25;
    A066676 = {};
    pm = 1;
    Do[
      pm *= Prime[n];
      sol = 0;
      If[PrimeQ[pm + 1],
       sol = pm + 1;
       ,
       sd = Select[Divisors[pm/2], # <= Sqrt[pm/2] &];
       Do[
        f1 = sd[[i]];
        f2 = pm/2/f1;
        If[PrimeQ[2 f1 + 1] && PrimeQ[2 f2 + 1],
         sol = (2 f1 + 1)*(2 f2 + 1);
         Break[];
         ];
         , {i, Length[sd], 1, -1}];
       ];
      AppendTo[A066676, sol];
      Print[{n, sol}];
       , {n, nmax}];
    A066676 (* Ray Chandler, Oct 21 2011 *)

Formula

a(n) = Min{x : A000010(x) mod A002110(n) = 0}.

Extensions

a(9)-a(11) from Donovan Johnson, Oct 12 2011
a(12)-a(13) upper limits from Donovan Johnson confirmed as next terms, a(14)-a(19) added by Ray Chandler, Oct 21 2011