A066676 Smallest number m such that phi(m) is a multiple of n-th primorial number, the product of first n primes.
3, 7, 31, 211, 2311, 60653, 1023053, 19417793, 446235509, 12939711677, 200560490131, 14841484883609, 608500576478849, 26165522997357677, 1229779567395958169, 65178316970529225209, 3845520700432469775917, 234576762719782814756597, 15716643102168462956621849
Offset: 1
Keywords
Examples
n = 8: a(8) = 19417793, phi(a(8)) = 19199380 = 2*9699690 = 2*2*3*5*7*11*13*17*19.
Links
- Ray Chandler, Table of n, a(n) for n = 1..25
Programs
-
Mathematica
nmax = 25; A066676 = {}; pm = 1; Do[ pm *= Prime[n]; sol = 0; If[PrimeQ[pm + 1], sol = pm + 1; , sd = Select[Divisors[pm/2], # <= Sqrt[pm/2] &]; Do[ f1 = sd[[i]]; f2 = pm/2/f1; If[PrimeQ[2 f1 + 1] && PrimeQ[2 f2 + 1], sol = (2 f1 + 1)*(2 f2 + 1); Break[]; ]; , {i, Length[sd], 1, -1}]; ]; AppendTo[A066676, sol]; Print[{n, sol}]; , {n, nmax}]; A066676 (* Ray Chandler, Oct 21 2011 *)
Extensions
a(9)-a(11) from Donovan Johnson, Oct 12 2011
a(12)-a(13) upper limits from Donovan Johnson confirmed as next terms, a(14)-a(19) added by Ray Chandler, Oct 21 2011