cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066737 Composite numbers that are concatenations of primes.

Original entry on oeis.org

22, 25, 27, 32, 33, 35, 52, 55, 57, 72, 75, 77, 112, 115, 117, 132, 133, 135, 172, 175, 177, 192, 195, 213, 217, 219, 222, 225, 231, 232, 235, 237, 243, 247, 252, 253, 255, 259, 261, 267, 272, 273, 275, 279, 289, 292, 295, 297, 312, 315, 319, 322, 323, 325
Offset: 1

Views

Author

Joseph L. Pe, Jan 15 2002

Keywords

Examples

			72 is the concatenation of primes 7 and 2. 132 is the concatenation of primes 13 and 2. 225 is the concatenation of 2, 2 and 5.
		

Crossrefs

Cf. A121609.

Programs

  • Maple
    ccat:= proc(m,n) 10^(1+ilog10(n))*m+n end proc:
    C[1]:= {2,3,5,7}: P[1]:=C[1]:
    for n from 2 to 3 do
      P[n]:= select(isprime, {seq(i,i=10^(n-1)+1..10^n-1,2)});
      C[n]:= P[n];
      for m from 1 to n-1 do
        C[n]:= C[n] union {seq(seq(ccat(p,q),p =P[m]),q=C[n-m])};
      od
    od:
    seq(op(sort(convert(remove(isprime,C[n]),list))),n=1..3); # Robert Israel, Jan 22 2020
  • PARI
    for(n=1,999, !isprime(n) && is_A152242(n) && print1(n", ")) \\ M. F. Hasler, Oct 16 2009

Formula

A066737 = A152242 \ A000040 = A152242 intersect A002808. - M. F. Hasler, Oct 16 2009

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 03 2002
Missing terms added by M. F. Hasler, Oct 16 2009