A066767 a(n) = Sum_{k=1..n} sigma(k)*2^(n-k) where sigma(k) = A000203(k) is the sum of divisors of k.
1, 5, 14, 35, 76, 164, 336, 687, 1387, 2792, 5596, 11220, 22454, 44932, 89888, 179807, 359632, 719303, 1438626, 2877294, 5754620, 11509276, 23018576, 46037212, 92074455, 184148952, 368297944, 736595944, 1473191918, 2946383908
Offset: 1
Keywords
Examples
a(1) = 2*(1/2); a(2) = 4*(1/2 + (1+2)/4) since sigma(1) = 1 and sigma(2) = 1 + 2 = 3; a(3) = 8*(1/2 + (1+2)/4 + (1+3)/8); a(4) = 16*(1/2 + (1+2)/4 + (1+3)/8 + (1+2+4)/16).
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
Links
- Steven R. Finch, Digital Search Tree Constants [Broken link]
- Steven R. Finch, Digital Search Tree Constants [From the Wayback machine]
Programs
-
PARI
smv(v)= s=0; for(i=1,matsize(v)[2],s=s+v[i]); s a(n)= sm=0; for(j=1,n,sm=sm+smv(divisors(j)/2^j)); sm*2^n
-
PARI
a(n) = 2^n*(sum(k=1, n, sigma(k)/2^k)); \\ Michel Marcus, Apr 25 2022
Comments