A066808 a(n) = F(n)-1 mod 2^n+1 with F(n) = n-th Fermat number = 1+2^2^n.
0, 1, 1, 4, 1, 4, 16, 4, 1, 256, 16, 4, 4081, 4, 16, 256, 1, 4, 261121, 4, 65536, 256, 16, 4, 65536, 33554305, 16, 67108864, 65536, 4, 16, 4, 1, 256, 16, 262144, 68451041281, 4, 16, 256, 65536, 4, 4398042316801, 4, 65536, 35184371957761, 16, 4, 281474976645121
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3323
- Chris Caldwell, Fermat Number, The Prime Glossary.
- Eric Weisstein's World of Mathematics, Fermat Number.
Programs
-
Maple
a:= n-> 2&^(2^n) mod (2^n+1): seq(a(n), n=0..50); # Alois P. Heinz, Jul 04 2022
-
Mathematica
Table[ PowerMod[ 2, 2^n, 2^n+1 ], {n, 64} ]
Formula
F(n)-1=1 mod (2^n+1) for all n=2^k because F(n)=2+ F(1)F(2)..F(n-1)
Extensions
a(0)=0 prepended by Alois P. Heinz, Jul 04 2022
Comments