A066886 Sum of the elements in any transversal of a prime(n) X prime(n) array containing the numbers from 1 to prime(n)^2 in standard order.
5, 15, 65, 175, 671, 1105, 2465, 3439, 6095, 12209, 14911, 25345, 34481, 39775, 51935, 74465, 102719, 113521, 150415, 178991, 194545, 246559, 285935, 352529, 456385, 515201, 546415, 612575, 647569, 721505, 1024255, 1124111, 1285745
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Carlos Rivera, The prime puzzles & problems connection, conjecture 26, The Prime Puzzles and Problems Connection.
Programs
-
Maple
map(t -> t*(t^2+1)/2, [seq(ithprime(i),i=1..100)]); # Robert Israel, Apr 04 2018
-
Mathematica
a[n_] := Prime[n] (Prime[n]^2 + 1)/2; Table[a[n], {n, 50}]
-
PARI
apply(x->(x*(x^2+1)/2), primes(100)) \\ Michel Marcus, Apr 04 2018
Formula
a(n) = prime(n)*(prime(n)^2+1)/2, where prime(n) is the n-th prime.
a(n) = A006003(prime(n)). - Michel Marcus, Apr 04 2018
Extensions
Edited by Dean Hickerson, Jun 08 2002
Comments