cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066938 Primes of the form p*q+p+q, where p and q are primes.

Original entry on oeis.org

11, 17, 23, 31, 41, 47, 53, 59, 71, 79, 83, 89, 107, 113, 127, 131, 151, 167, 179, 191, 227, 239, 251, 263, 269, 271, 293, 311, 359, 383, 419, 431, 439, 443, 449, 479, 491, 503, 521, 587, 593, 599, 607, 631, 647, 659, 683, 701, 719, 727, 743, 773, 809, 827
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 24 2002

Keywords

Comments

For p not equal to q, either p*q or p+q is odd, so their sum is odd.
The representation is ambiguous, e.g. 2*7+2+7 = 23 = 3*5+3+5.
Complement of A198273 with respect to A000040. - Reinhard Zumkeller, Oct 23 2011
None of these primes are in A158913 since if p*q+p+q is a prime, then sigma(p*q+p+q) = sigma(p*q). - Amiram Eldar, Nov 15 2021

Examples

			59 is in the sequence because 59 = 2 * 19 + 2 + 19.
		

Crossrefs

Programs

  • Haskell
    a066938 n = a066938_list !! (n-1)
    a066938_list = map a000040 $ filter ((> 0) . a067432) [1..]
    -- Reinhard Zumkeller, Oct 23 2011
    
  • Mathematica
    nn = 1000; n2 = PrimePi[nn/3]; Select[Union[Flatten[Table[(Prime[i] + 1) (Prime[j] + 1) - 1, {i, n2}, {j, n2}]]], # <= nn && PrimeQ[#] &]
  • PARI
    is(n)=fordiv(n+1,d,my(p=d-1,q=(n+1)/d-1); if(isprime(p) && isprime(q), return(isprime(n)))); 0 \\ Charles R Greathouse IV, Jul 23 2013

Formula

A067432(A049084(a(n))) > 0. - Reinhard Zumkeller, Oct 23 2011
A054973(a(n)+1) >= 2. - Amiram Eldar, Nov 15 2021

Extensions

Edited by Robert G. Wilson v, Feb 01 2002