A067018 Start with a(0)=1, a(1)=4, a(2)=3, a(3)=2; for n>=3, a(n+1) = mex_i (nim-sum a(i)+a(n-i)), where mex means smallest nonnegative missing number.
1, 4, 3, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0
Offset: 0
Examples
a(5) = mex{1 xor 0, 4 xor 2, 3 xor 3, etc. (duplicates)} = mex{1 xor 0, 100 xor 10, 11 xor 11} (in base 2) = mex{1, 6, 0} = 2
References
- R. K. Guy, Unsolved Problems in Number Theory, E27.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
import Data.Bits (xor) import Data.List ((\\)) a067018 n = a067018_list !! n a067018_list = [1,4,3,2] ++ f [2,3,4,1] where f xs = mexi : f (mexi : xs) where mexi = head $ [0..] \\ zipWith xor xs (reverse xs) :: Integer -- Reinhard Zumkeller, May 05 2012
Extensions
More terms from John W. Layman, Feb 20 2002
Comments