A067066 Number of Gnutella users reachable with given connections and hops.
1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 21, 8, 1, 6, 25, 52, 45, 10, 1, 7, 36, 105, 160, 93, 12, 1, 8, 49, 186, 425, 484, 189, 14, 1, 9, 64, 301, 936, 1705, 1456, 381, 16, 1, 10, 81, 456, 1813, 4686, 6825, 4372, 765, 18, 1, 11, 100, 657, 3200, 10885, 23436, 27305, 13120, 1533, 20, 1
Offset: 1
Examples
1 1 1 1 1 1 1 ... 2 4 6 8 10 12 14 ... 3 9 21 45 93 189 381 ... 4 16 52 160 484 1456 4372 ... 5 25 105 425 1705 6825 27305 ... 6 36 186 936 4686 23436 117186 ... 7 49 301 1813 10885 65317 391909 ...
Links
- Jordan Ritter, Why Gnutella Can't Scale. No, Really.
Crossrefs
Cf. A104881.
Formula
T(n,k) = n * Sum_{i=0..k-1} (n-1)^i.
Extensions
Offset corrected, R. J. Mathar, May 22 2016