A067132 Number of elements in the largest set of divisors of n which are in geometric progression.
1, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 5, 2, 3, 2, 3, 2, 2, 2, 4, 3, 2, 4, 3, 2, 2, 2, 6, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 5, 3, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 3, 2, 2, 3, 7, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 2, 6, 2, 3, 3, 3, 2, 2, 2
Offset: 1
Examples
a(12) = 3 as the divisors of 12 are {1,2,3,4,6,12} and the maximal subsets in geometric progression are {1,2,4} and {3,6,12}. a(16) = 5; the maximal set is {1,2,4,8,16}.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
seq(max(0,seq(padic[ordp](n, p), p in numtheory[factorset](n))) + 1, n=1..100); # Ridouane Oudra, Sep 10 2024
-
Mathematica
a[n_] := If[n==1, 1, Max@@Last/@FactorInteger[n]+1]
Formula
If the prime factorization of n>1 is p_1^e_1 ... p_k^e_k, then a(n) = 1+max(e_1, ..., e_k).
a(n) = A051903(n) + 1. - Ridouane Oudra, Sep 10 2024
Extensions
Edited by Dean Hickerson, Jan 15 2002
Comments