A067180 Smallest prime with digit sum n, or 0 if no such prime exists.
0, 2, 3, 13, 5, 0, 7, 17, 0, 19, 29, 0, 67, 59, 0, 79, 89, 0, 199, 389, 0, 499, 599, 0, 997, 1889, 0, 1999, 2999, 0, 4999, 6899, 0, 17989, 8999, 0, 29989, 39989, 0, 49999, 59999, 0, 79999, 98999, 0, 199999, 389999, 0, 598999, 599999, 0, 799999, 989999, 0, 2998999, 2999999, 0, 4999999
Offset: 1
Examples
a(68) = 59999999 because 59999999 is the smallest prime with digit sum = 68; a(100) = 298999999999 because 298999999999 is the smallest prime with digit sum = 100.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000 (first 175 terms from Robert G. Wilson v)
Programs
-
Maple
g:= proc(s,d) # integers of <=d digits with sum s if s > 9*d then return [] fi; if d = 1 then return [s] fi; [seq(op(map(t -> j*10^(d-1)+ t, g(s-j,d-1))),j=0..9)]; end proc: f:= proc(n) local d, j,x,y; if n mod 3 = 0 then return 0 fi; for d from ceil(n/9) do if d = 1 then if isprime(n) and n < 10 then return n else next fi fi; for j from 1 to 9 do for y in g(n-j,d-1) do x:= 10^(d-1)*j + y; if isprime(x) then return x fi; od od od; end proc: f(1):= 0: f(3):= 3: map(f, [$1..100]); # Robert Israel, Dec 13 2020
-
Mathematica
a = Table[0, {100}]; Do[b = Apply[ Plus, IntegerDigits[ Prime[n]]]; If[b < 101 && a[[b]] == 0, a[[b]] = Prime[n]], {n, 1, 10^7} ]; a f[n_] := If[n > 5 && Mod[n, 3] == 0, 0, Block[{k = 1, lmt, lst = {}, ip = IntegerPartitions[n, Round[1 + n/9], {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}]}, lmt = 1 + Length@ ip; While[k < lmt, AppendTo[lst, Select[ FromDigits@# & /@ Permutations@ ip[[k]], PrimeQ[#] &]]; k++]; Min@ Flatten@ lst]]; f[1] = 0; f[4] = 13; Array[f, 70] (* Robert G. Wilson v, Sep 28 2014 *)
-
PARI
A067180(n)={if(n<2, 0, n<4, n, n%3, my(d=divrem(n,9)); forprime(p=d[2]*10^d[1]-1,,sumdigits(p)==n&&return(p)))} \\ M. F. Hasler, Nov 04 2018
Formula
a(3k) = 0 for k > 1.
Extensions
Edited and extended by Robert G. Wilson v, Mar 01 2002
Edited by Ray Chandler, Apr 24 2007