cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238707 Number T(n,k) of ballot sequences of length n having difference k between the multiplicities of the smallest and the largest value; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 4, 3, 3, 0, 0, 2, 14, 6, 4, 0, 0, 12, 14, 35, 10, 5, 0, 0, 2, 69, 71, 69, 15, 6, 0, 0, 30, 97, 295, 195, 119, 21, 7, 0, 0, 44, 251, 751, 929, 421, 188, 28, 8, 0, 0, 86, 671, 2326, 3044, 2254, 791, 279, 36, 9, 0, 0, 2, 1847, 6524, 11824, 8999, 4696, 1354, 395, 45, 10, 0, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 03 2014

Keywords

Comments

Also the number of standard Young tableaux (SYT) with n cells having difference k between the lengths of the first and the last row.

Examples

			For n=4 the 10 ballot sequences of length 4 and differences between the multiplicities of the smallest and the largest value are:
[1, 2, 3, 4]  ->  1-1 = 0,
[1, 1, 2, 2]  ->  2-2 = 0,
[1, 2, 1, 2]  ->  2-2 = 0,
[1, 1, 1, 1]  ->  4-4 = 0,
[1, 1, 2, 3]  ->  2-1 = 1,
[1, 2, 1, 3]  ->  2-1 = 1,
[1, 2, 3, 1]  ->  2-1 = 1,
[1, 1, 1, 2]  ->  3-1 = 2,
[1, 1, 2, 1]  ->  3-1 = 2,
[1, 2, 1, 1]  ->  3-1 = 2,
thus row 4 = [4, 3, 3, 0, 0].
The 10 tableaux with 4 cells sorted by the difference between the lengths of the first and the last row are:
:[1] [1 2] [1 3] [1 2 3 4]:[1 2] [1 3] [1 4]:[1 2 3] [1 2 4] [1 3 4]:
:[2] [3 4] [2 4]          :[3]   [2]   [2]  :[4]     [3]     [2]    :
:[3]                      :[4]   [4]   [3]  :                       :
:[4]                      :                 :                       :
: -----------0----------- : -------1------- : ----------2---------- :
Triangle T(n,k) begins:
00:   1;
01:   1,   0;
02:   2,   0,    0;
03:   2,   2,    0,    0;
04:   4,   3,    3,    0,    0;
05:   2,  14,    6,    4,    0,   0;
06:  12,  14,   35,   10,    5,   0,   0;
07:   2,  69,   71,   69,   15,   6,   0,  0;
08:  30,  97,  295,  195,  119,  21,   7,  0,  0;
09:  44, 251,  751,  929,  421, 188,  28,  8,  0,  0;
10:  86, 671, 2326, 3044, 2254, 791, 279, 36,  9,  0,  0;
		

Crossrefs

T(2n,n) gives A244305.
Row sums give A000085.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n<1, x^(l[1]-l[-1]),
          expand(b(n-1, [l[], 1])+add(`if`(i=1 or l[i-1]>l[i],
          b(n-1, subsop(i=l[i]+1, l)), 0), i=1..nops(l))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n-1, [1])):
    seq(T(n), n=0..12);
    # second Maple program (counting SYT):
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
           add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0 or i=1, (p->h(p)*x^(`if`(p=[], 0, p[1]-
          p[-1])))([l[], 1$n]), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))
        end:
    T:= n->(p-> seq(coeff(p, x, i), i=0..n))(g(n, n, [])):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, l_List] := b[n, l] = If[n<1, x^(l[[1]] - l[[-1]]), Expand[b[n-1, Append[l, 1]] + Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n-1, {1}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 07 2015, translated from Maple *)

A067231 Number of Young tableaux with n=i*j cells and type i*j matrices with i>=j.

Original entry on oeis.org

1, 1, 1, 3, 1, 6, 1, 15, 43, 43, 1, 595, 1, 430, 6007, 25455, 1, 92379, 1, 1679601, 1385671, 58787, 1, 163809451, 701149021, 742901, 414315331, 13675080331, 1, 404155466746, 1, 1489913284351, 145862174641, 129644791, 278607172289161, 1851800127304981, 1
Offset: 1

Views

Author

Naohiro Nomoto, Feb 20 2002

Keywords

Comments

a(p) = 1 for prime p. - Alois P. Heinz, Jul 25 2012

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> n!*add(mul(k!/(i+k)!, k=0..n/i-1),
            i=select(d-> is(d>=sqrt(n)), divisors(n))):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 25 2012
  • Mathematica
    a[n_] := n!*Sum[Product[k!/(i+k)!, {k, 0, n/i-1}], {i, Select[Divisors[n], # >= Sqrt[n]&]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = number of ways to arrange the numbers 1, 2, .., n=i*j in i*j matrices so that each row and each column is increasing. Here i and j satisfy i >= j.
a(n) = n! * Sum_{i|n, i>=sqrt(n)} Product_{k=0..n/i-1} k!/(i+k)!. - Alois P. Heinz, Jul 25 2012
Showing 1-2 of 2 results.