cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067231 Number of Young tableaux with n=i*j cells and type i*j matrices with i>=j.

Original entry on oeis.org

1, 1, 1, 3, 1, 6, 1, 15, 43, 43, 1, 595, 1, 430, 6007, 25455, 1, 92379, 1, 1679601, 1385671, 58787, 1, 163809451, 701149021, 742901, 414315331, 13675080331, 1, 404155466746, 1, 1489913284351, 145862174641, 129644791, 278607172289161, 1851800127304981, 1
Offset: 1

Views

Author

Naohiro Nomoto, Feb 20 2002

Keywords

Comments

a(p) = 1 for prime p. - Alois P. Heinz, Jul 25 2012

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> n!*add(mul(k!/(i+k)!, k=0..n/i-1),
            i=select(d-> is(d>=sqrt(n)), divisors(n))):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 25 2012
  • Mathematica
    a[n_] := n!*Sum[Product[k!/(i+k)!, {k, 0, n/i-1}], {i, Select[Divisors[n], # >= Sqrt[n]&]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = number of ways to arrange the numbers 1, 2, .., n=i*j in i*j matrices so that each row and each column is increasing. Here i and j satisfy i >= j.
a(n) = n! * Sum_{i|n, i>=sqrt(n)} Product_{k=0..n/i-1} k!/(i+k)!. - Alois P. Heinz, Jul 25 2012