A067298 Generalized Catalan triangle, based on C(2,2; n) = A064340(n).
1, 1, 2, 4, 5, 9, 28, 32, 36, 64, 256, 284, 300, 328, 584, 2704, 2960, 3072, 3184, 3440, 6144, 31168, 33872, 34896, 35680, 36704, 39408, 70576, 380608, 411776, 422592, 429760, 436928, 447744, 478912, 859520, 4840960, 5221568, 5346240, 5421952, 5487488, 5563200, 5687872, 6068480, 10909440
Offset: 0
Examples
Triangle begins: 1; 1, 2; 4, 5, 9; 28, 32, 36, 64; 256, 284, 300, 328, 584; ...
Crossrefs
Programs
-
PARI
A064340(n) = if(n>1, sum(m=0, n-2, (m+1)*(m+2)*binomial(2*(n-2)-m, n-2-m)/2^(m+1))*(4^(n-1))/(n-1), 1); T(n, m) = sum(i=0, m, A064340(i)*A064340(n-i)); \\ Jinyuan Wang, Apr 20 2025
Formula
T(n, m) = Sum_{i=0..m} C(2,2; i)*C(2,2; n-i) if n >= m >= 0 else 0.
Extensions
More terms from Jinyuan Wang, Apr 20 2025
Comments