cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067297 Convolution of C(2,2; n) := A064340(n) (generalized Catalan numbers) with itself.

Original entry on oeis.org

1, 2, 9, 64, 584, 6144, 70576, 859520, 10909440, 142773760, 1913027840, 26115182592, 361936623616, 5079287545856, 72033971859456, 1030768222437376, 14864066521333760, 215791593346695168
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Crossrefs

Bisections: a(2*k) = A067320(k), a(2*k+1) = 2*A067321(k), k>=0.

Formula

a(n) = Sum_{k=0..n} C(2, 2; k)*C(2, 2; n-k).
G.f.: ((3+c(4*x))/(2*(1-2*x*c(4*x))*(1+c(4*x))))^2, with c(x) g.f. for A000108 (Catalan). Also: (c(4*x)*(3+c(4*x)))^2/(1+c(4*x))^4, or (-1+36*x +(1+24*x)*c(4*x))/((1-4*x)*(1+20*x)*c(4*x)-1+44*x-16*x^2).

A067321 One-half of odd-indexed members of A067297.

Original entry on oeis.org

1, 32, 3072, 429760, 71386880, 13057591296, 2539643772928, 515384111218688, 107895796673347584, 23131454701441122304, 5052953723661587578880, 1120663604347562971103232, 251676943773831910414876672
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Crossrefs

Cf. A067320 (even-indexed members of A067297).

Formula

a(n) = A067297(2n+1)/2.
G.f.: A(x) = (f(y) - f(-y))/y with f(y) := (-1 + 9*y + (1+6*y)*c(y))/((1-y)*(1+5*y)*c(y) - 1 + 11*y - y^2) where c(y) is g.f. of A000108 (Catalan) and y=4*sqrt(x).

A067303 Even-indexed members of A067302.

Original entry on oeis.org

1, 18, 1752, 282304, 54547200, 11478167040, 2533556365312, 576271774875648, 133776598692003840, 31513560479297044480, 7505638177922587557888, 1802924878727702252617728, 436026430783762289982963712
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Crossrefs

Cf. A067322 (odd-indexed members of A067302).

Formula

a(n) = A067302(2n) = (n+1)*A067297(2*n).
G.f.: (x*(d/dx)A(x) + A(x)) with A(x) g.f. of A067320.
Showing 1-3 of 3 results.