cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067297 Convolution of C(2,2; n) := A064340(n) (generalized Catalan numbers) with itself.

Original entry on oeis.org

1, 2, 9, 64, 584, 6144, 70576, 859520, 10909440, 142773760, 1913027840, 26115182592, 361936623616, 5079287545856, 72033971859456, 1030768222437376, 14864066521333760, 215791593346695168
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Crossrefs

Bisections: a(2*k) = A067320(k), a(2*k+1) = 2*A067321(k), k>=0.

Formula

a(n) = Sum_{k=0..n} C(2, 2; k)*C(2, 2; n-k).
G.f.: ((3+c(4*x))/(2*(1-2*x*c(4*x))*(1+c(4*x))))^2, with c(x) g.f. for A000108 (Catalan). Also: (c(4*x)*(3+c(4*x)))^2/(1+c(4*x))^4, or (-1+36*x +(1+24*x)*c(4*x))/((1-4*x)*(1+20*x)*c(4*x)-1+44*x-16*x^2).

A067320 Even-indexed members of A067297.

Original entry on oeis.org

1, 9, 584, 70576, 10909440, 1913027840, 361936623616, 72033971859456, 14864066521333760, 3151356047929704448, 682330743447507959808, 150243739893975187718144, 33540494675674022306381824
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Crossrefs

Cf. A067321 (one half of odd-indexed terms of A067297).

Formula

a(n) = A067297(2n).
G.f.: A(x) = (f(y) + f(-y))/2 with f(y) := (-1 + 9*y + (1+6*y)*c(y))/((1-y)*(1+5*y)*c(y) - 1 + 11*y - y^2) where c(y) is g.f. of A000108 (Catalan) and y=4*sqrt(x).

A067322 Odd-indexed members of A067302.

Original entry on oeis.org

3, 160, 21504, 3867840, 785255680, 169748686848, 38094656593920, 8761529890717696, 2050020136793604096, 485760548730263568384, 116217935644216514314240, 28016590108689074277580800
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Crossrefs

Cf. A067303 (even-indexed members of A067302).

Formula

a(n) = A067302(2n+1) = (2*n+3)*A067297(2*n+1)/2.
G.f.: A(x) = (2*x*(d/dx)g(x) + 3*g(x)) with g(x) g.f. of A067321.
Showing 1-3 of 3 results.