A067340 Numbers k such that (number of distinct prime factors of k) divides (number of prime factors of k).
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1
Keywords
Examples
Primes and prime powers are included in this sequence. Another example: 24, since A001222(24)/A001222(24) = 4/2 = 2.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
ff[x_] := Flatten[FactorInteger[x]]; f1[x_] := Length[FactorInteger[x]]; f2[x_] := Apply[Plus, Table[Part[ff[x], 2*w], {w, 1, f1[x]}]]; Do[s=f2[n]/f1[n]; If[IntegerQ[s], Print[n]], {n, 2, 256}] Select[Range[2,91],Divisible[PrimeOmega[#],PrimeNu[#]]&] (* Ivan N. Ianakiev, Dec 07 2015 *)
-
PARI
v=[]; for(n=2,100,if(denominator(bigomega(n)/omega(n)) == 1,v=concat(v,n))); v
-
PARI
is(n)=my(f=factor(n)[,2]); #f && vecsum(f)%#f==0 \\ Charles R Greathouse IV, Oct 15 2015
-
SageMath
def dpf(n): return sloane.A001221(n) def tpf(n): return sloane.A001222(n) a = [k for k in range(1, 92) if ZZ(dpf(k)).divides(tpf(k))] print(a) # Peter Luschny, Jul 19 2023
Comments