cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067371 Arithmetic derivatives of 3-smooth numbers.

Original entry on oeis.org

0, 1, 1, 4, 5, 12, 6, 16, 32, 21, 44, 27, 80, 60, 112, 81, 192, 156, 108, 272, 216, 448, 384, 297, 640, 540, 405, 1024, 912, 756, 1472, 1296, 1053, 2304, 2112, 1836, 1458, 3328, 3024, 2592, 5120, 4800, 4320, 3645, 7424, 6912, 6156, 11264, 5103, 10752
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2002, revised: Jul 19 2003

Keywords

Examples

			a(18) = A003415(A003586(18)) = A003415(72) = A003415(2^3*3^2) = (3*3+2*2)*2^(3-1)*3^(2-1) = (9+4)*2^2*3^1 = 13*4*3 = 156.
a(27) = A003415(A003586(27)) = A003415(243) = A003415(2^0*3^5) = (3*0+2*5)*2^(0-1)*3^(5-1) = ((0+10)/2)*3^4 = 5*81 = 405.
		

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; ad[1] = 0; ad[n_] := n * Total @ (Last[#]/First[#] & /@ FactorInteger[n]); ad /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

A003415(2^i+3^j) = (3*i + 2*j) * 2^(i-1) * 3^(j-1), i, j >=0.
a(n) = A003415(A003586(n)).