A291921 Numbers that are the sum of (at least two) consecutive primes in exactly three ways.
240, 287, 340, 371, 510, 660, 803, 864, 931, 961, 990, 1012, 1060, 1099, 1104, 1151, 1236, 1313, 1367, 1392, 1524, 1643, 1710, 1788, 1793, 1951, 1956, 2040, 2303, 2304, 2387, 2393, 2436, 2507, 2556, 2586, 2647, 2670, 2689, 2706, 2886, 3010, 3166, 3232, 3263
Offset: 1
Keywords
Examples
240 is in the sequence because it can be written in exactly three ways as a sum of consecutive primes: 113 + 127, 53 + 59 + 61 + 67, and 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43.
Links
- Eric Weisstein's World of Mathematics, Prime Sums
Programs
-
Magma
lst1:=[]; lst3:=[]; r:=3263; s:=PrimesUpTo(Floor(r-r/3)); t:=#s; y:=0; w:=0; z:=1; while y le r do y+:=NthPrime(z); w+:=1; z+:=1; end while; for q in [1..NthPrime(w-1)] do for a in [1..t-q] do c:=&+[s[b]: b in [a..a+q]]; if c gt r then break; else Append(~lst1, c); end if; end for; end for; lst2:=Sort(lst1); x:=#lst2; for n in [1..r] do d:=Position(lst2, n); if d ge 1 and d+2 le x then e:=[lst2[f]: f in [d..d+2]]; if Min(e) eq Max(e) then if d+3 gt x then Append(~lst3, n); else if not lst2[d+3] eq n then Append(~lst3, n); end if; end if; end if; end if; end for; lst3;