cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A164556 Primes expressible as the sum of (at least two) consecutive primes in at least 5 ways.

Original entry on oeis.org

34421, 229841, 235493, 271919, 345011, 358877, 414221, 442019, 488603, 532823, 621937, 655561, 824099, 888793, 896341, 935791, 954623, 963173, 988321, 1055969, 1083371, 1083941, 1115911, 1170857, 1261763, 1338823, 1352863, 1409299, 1444957, 1598953, 1690597
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A067380.

Examples

			a(1) = 34421 = Sum_{i=57..127} prime(i) = Sum_{i=226..248} prime(i) = Sum_{i=527..535} prime(i) = Sum_{i=654..660} prime(i) = Sum_{i=1382..1384} prime(i) and
a(3) = 235493 = Sum_{i=50..284} prime(i) = Sum_{i=120..300} prime(i) = Sum_{i=123..301} prime(i) = Sum_{i=334..424} prime(i) = Sum_{i=7701..7703} prime(i)
are expressible in 5 ways as the sum of two or more consecutive primes.
		

Crossrefs

Programs

  • Magma
    M:=1695000; P:=PrimesUpTo(M); S:=[0]; for p in P do t:=S[#S]+p; if #S ge 3 then if t-S[#S-2] gt M then break; end if; end if; S[#S+1]:=t;end for; c:=[0:j in [1..M]]; for C in [2..#S-1] do if IsEven(C) then L:=1; else L:=#S-C; end if; for j in [1..L] do s:=S[j+C]-S[j]; if s gt M then break; end if; if IsPrime(s) then c[s]+:=1; end if; end for; end for; [j:j in [1..M]|c[j] ge 5]; // Jon E. Schoenfield, Dec 25 2021
  • Mathematica
    m=3*7!;lst={};Do[p=Prime[a];Do[p+=Prime[b];If[PrimeQ[p]&&p
    				

Formula

A067375 INTERSECT A000040.

Extensions

Examples added by R. J. Mathar, Aug 19 2009
a(10)-a(28) from Donovan Johnson, Sep 16 2009
a(29)-a(31) from Jon E. Schoenfield, Dec 25 2021

A350334 Primes expressible as the sum of (at least two) consecutive primes in at least 6 ways.

Original entry on oeis.org

442019, 1866373, 3051161, 3634531, 3704819, 3839677, 3890609, 4539331, 4711937, 5011213, 5069023, 5369743, 5384221, 6137587, 6783263, 6893273, 9213073, 10354177, 10602763, 11394193, 11849339, 12012257, 13126801, 13322887, 14385781, 15077143, 17225003, 19301221
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 25 2021

Keywords

Comments

Subsequence of A164556.

Examples

			442019 is a term because it is a prime and
   442019 = Sum_{j=13620..13622} prime(j)
          = Sum_{j=5044..5052} prime(j)
          = Sum_{j=2019..2043} prime(j)
          = Sum_{j=1573..1605} prime(j)
          = Sum_{j=954..1010} prime(j)
          = Sum_{j=81..381} prime(j).
		

Crossrefs

A350335 Primes expressible as the sum of (at least two) consecutive primes in at least 7 ways.

Original entry on oeis.org

3634531, 27411611, 28127521, 28445689, 48205429, 54604973, 56857523, 63461429, 70734089, 72087167, 75489781, 82183951, 83020733, 89752433, 92712023, 94026311, 100925263, 111282419, 137392361, 163506407, 164711999, 194039771, 195327179, 196364899, 196876789
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 25 2021

Keywords

Comments

Subsequence of A350334.

Examples

			3634531 is a term because it is a prime and
   3634531 = Sum_{j=42997..43003} prime(j)
           = Sum_{j=15749..15769} prime(j)
           = Sum_{j=7294..7342} prime(j)
           = Sum_{j=7032..7082} prime(j)
           = Sum_{j=3397..3509} prime(j)
           = Sum_{j=165..1003} prime(j)
           = Sum_{j=65..995} prime(j).
		

Crossrefs

Showing 1-3 of 3 results.