cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067399 Number of divisors of n in OR-numbral arithmetic.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 3, 4, 2, 4, 2, 6, 2, 6, 5, 5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8, 6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14, 7, 2, 4, 2, 6, 2, 4, 2, 8, 3, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 9, 5, 4, 2, 8, 2, 8, 4, 6, 2, 8, 6, 12, 2, 4, 4, 6
Offset: 1

Views

Author

Jens Voß, Jan 23 2002

Keywords

Comments

See A048888 for the definition of OR-numbral arithmetic. The example shows that this sequence is not multiplicative.
In other words, number of lunar divisors of n in base 2.

Examples

			a(15)=5 since [15] has the 5 OR-numbral divisors [1], [3], [5], [7] and [15].
If written as a triangle with rows of lengths 1,2,4,8,16,...:
1,
2, 2,
3, 2, 4, 3,
4, 2, 4, 2, 6, 2, 6, 5,
5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8,
6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14,
...,
the last terms in each row give A079500(n). The penultimate terms in the rows give 2*A079500(n-1). - _N. J. A. Sloane_, Mar 05 2011
		

Crossrefs

A079500 is the subsequence a(2^k-1). - N. J. A. Sloane, Feb 23 2011
See A188548 for the sum of the divisors.

A067398 Squares in OR-numbral arithmetic.

Original entry on oeis.org

0, 1, 4, 7, 16, 21, 28, 31, 64, 73, 84, 95, 112, 125, 124, 127, 256, 273, 292, 311, 336, 341, 380, 383, 448, 473, 500, 511, 496, 509, 508, 511, 1024, 1057, 1092, 1127, 1168, 1205, 1244, 1279, 1344, 1385, 1364, 1407, 1520, 1533, 1532, 1535, 1792, 1841, 1892
Offset: 0

Views

Author

Jens Voß, Jan 23 2002

Keywords

Comments

See A048888 for the definition of OR-numbral arithmetic.
Or, squares in lunar arithmetic base 2, written in base 10. - N. J. A. Sloane, Oct 02 2010
This sequence is not multiplicative; for example a(15) = 127 != 7 * 21 = a(3) * a(5). It is totally OR-numbral multiplicative: a([n] * [m]) = [a(n)] * [a(m)] in OR-numbral arithmetic. - Franklin T. Adams-Watters, Oct 27 2006

Examples

			A067398(5) = 21 since [5] * [5] = [21] in OR-numbral arithmetic.
		

Crossrefs

Programs

  • Haskell
    a067398 :: Integer -> Integer
    a067398 0 = 0
    a067398 n = orm n n where
       orm 1 v = v
       orm u v = orm (shiftR u 1) (shiftL v 1) .|. if odd u then v else 0
    -- Reinhard Zumkeller, Mar 01 2013

A067401 Minimal non-uniquely factorizable OR-numbrals, i.e., numbrals that are not uniquely factorizable but for which all proper divisors are.

Original entry on oeis.org

15, 85, 95, 111, 123, 125, 175, 191, 207, 223, 239, 243, 245, 247, 251, 253, 351, 367, 379, 381, 399, 415, 443, 445, 447, 463, 483, 487, 493, 499, 501, 507, 585, 603, 621, 631, 639, 685, 687, 701, 725, 729, 731, 735, 757, 763, 783, 799, 827, 831, 873, 877
Offset: 1

Views

Author

Jens Voß, Jan 24 2002

Keywords

Comments

See A048888 for the definition of OR-numbral arithmetic.

Examples

			15 is in A067401 since [15] = [3] * [5] = [3]^3 all divisors of [15] are uniquely factorizable.
		

Crossrefs

Showing 1-3 of 3 results.