A067439 a(n) = sum of all the remainders when n is divided by positive integers less than and coprime to n.
0, 0, 1, 1, 4, 1, 8, 6, 9, 5, 22, 8, 28, 15, 19, 20, 51, 20, 64, 30, 39, 33, 98, 33, 83, 56, 89, 55, 151, 46, 167, 95, 107, 95, 150, 71, 233, 120, 172, 106, 297, 92, 325, 163, 186, 162, 403, 144, 358, 189, 279, 217, 505, 173, 375, 230, 342, 276, 635, 165, 645, 338
Offset: 1
Keywords
Examples
a(8) = 6. The remainders when 8 is divided by the coprime numbers 1, 3, 5 and 7 are 0, 2, 3 and 1, whose sum = 6.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a := n -> add(ifelse(igcd(n, i) = 1, irem(n, i), 0), i = 1..n-1): seq(a(n), n = 1..62); # Peter Luschny, May 14 2025
-
Mathematica
a[n_] := Sum[If[GCD[i, n]>1, 0, Mod[n, i]], {i, 1, n-1}] Table[Total[Mod[n,#]&/@Select[Range[n-1],CoprimeQ[#,n]&]],{n,70}] (* Harvey P. Dale, May 22 2012 *)
-
PARI
a(n)=sum(i=1,n-1,if(gcd(n,i)==1,n%i)) \\ Charles R Greathouse IV, Jul 17 2012
Formula
From Ridouane Oudra, May 14 2025: (Start)
a(n) = Sum_{d|n} d*mu(d)*A004125(n/d).
a(n) = Sum_{d|n} mu(d)*f(n,d), where f(n,d) = Sum_{i=1..n/d} (n mod d*i).
a(p) = A004125(p), for p prime.
Extensions
Edited by Dean Hickerson, Feb 15 2002