A067528 Numbers n such that n - 4^k is a prime or 1 for all k > 0 and n > 4^k.
5, 6, 7, 9, 11, 15, 17, 21, 23, 27, 33, 35, 45, 47, 57, 63, 75, 77, 83, 87, 105, 117, 143, 153, 167, 195, 215, 227, 243, 245, 255, 287, 297, 413, 437, 447, 483, 495, 507, 525, 573, 635, 657, 677, 755, 825, 1113, 1133, 1295, 1487, 1515, 1547, 1617, 1623, 2015
Offset: 1
Keywords
Examples
167 is a term as 167 - 4 = 163, 167 - 16 = 151, 167 - 64 = 103 are primes.
Links
- T. D. Noe, Table of n, a(n) for n=1..102 (no others < 2*10^9)
Crossrefs
Cf. A067526.
Programs
-
Maple
filter:= proc(n) local k, t; for k from 1 do if 4^k >= n-1 then return true elif not isprime(n-4^k) then return false fi od end proc: select(filter, [$5..3000]); # Robert Israel, May 24 2017
-
Mathematica
A067528 = {}; Do[k = 1; While[p = n - 4^k; p > 0 && (p == 1 || PrimeQ[p]), k++]; If[p <= 0, AppendTo[A067528, n]], {n, 5, 10^7}]; A067528 (* T. D. Noe *)
Extensions
More terms from Sascha Kurz, Mar 19 2002
Comments