A067539 Number of partitions of n in which, if the number of parts is k, the product of the parts is the k-th power of some positive integer.
1, 2, 2, 3, 3, 4, 3, 4, 4, 8, 3, 8, 5, 7, 8, 8, 7, 9, 8, 17, 11, 11, 8, 16, 17, 17, 14, 18, 17, 26, 19, 24, 20, 30, 28, 32, 27, 37, 35, 48, 37, 45, 37, 51, 51, 58, 50, 64, 62, 83, 73, 84, 69, 91, 89, 101, 97, 116, 111, 136, 123, 142, 138, 160, 161, 181, 171, 205, 199, 231, 221
Offset: 1
Examples
From _Gus Wiseman_, Jul 19 2019: (Start) The a(1) = 1 through a(8) = 4 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (41) (33) (421) (44) (1111) (11111) (222) (1111111) (2222) (111111) (11111111) (End)
Links
- Wikipedia, Geometric mean
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],IntegerQ[GeometricMean[#]]&]],{n,30}] (* Gus Wiseman, Jul 19 2019 *)
-
Python
from math import prod from sympy import integer_nthroot from sympy.utilities.iterables import partitions def A067539(n): return sum(1 for s,p in partitions(n,size=True) if integer_nthroot(prod(a**b for a, b in p.items()),s)[1]) # Chai Wah Wu, Sep 24 2023
Extensions
Terms a(61) onwards from Max Alekseyev, Feb 06 2010
Comments