cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A066884 Square array read by upward antidiagonals where the n-th row contains the positive integers with n binary 1's.

Original entry on oeis.org

1, 3, 2, 7, 5, 4, 15, 11, 6, 8, 31, 23, 13, 9, 16, 63, 47, 27, 14, 10, 32, 127, 95, 55, 29, 19, 12, 64, 255, 191, 111, 59, 30, 21, 17, 128, 511, 383, 223, 119, 61, 39, 22, 18, 256, 1023, 767, 447, 239, 123, 62, 43, 25, 20, 512, 2047, 1535, 895, 479, 247, 125, 79, 45, 26, 24, 1024
Offset: 1

Views

Author

Jared Benjamin Ricks (jaredricks(AT)yahoo.com), Jan 21 2002

Keywords

Comments

This is a permutation of the positive integers; the inverse permutation is A067587.

Examples

			Column: 1   2   3   4   5   6
-----------------------------
Row 1:| 1   2   4   8  16  32
Row 2:| 3   5   6   9  10  12
Row 3:| 7  11  13  14  19  21
Row 4:|15  23  27  29  30  39
Row 5:|31  47  55  59  61  62
Row 6:|63  95 111 119 123 125
		

Crossrefs

Selected rows: A000079 (1), A018900 (2), A014311 (3), A014312 (4), A014313 (5), A023688 (6), A023689 (7), A023690 (8), A023691 (9), A038461 (10), A038462 (11), A038463 (12). For decimal analogs, see A011557 and A038444-A038452.
Selected columns: A000225 (1), A055010 (2).
Selected diagonals: A036563 (main), A000918 (1st upper), A153894 (2nd upper). [Franklin T. Adams-Watters, Apr 22 2009]
Cf. A067576 (the same array read by downward antidiagonals).
Antidiagonal sums give A361074.

Programs

  • Mathematica
    a = {}; Do[ a = Append[a, Last[ Take[ Take[ Select[ Range[2^12], Count[ IntegerDigits[ #, 2], 1] == j - i + 1 & ], j], i]]], {j, 1, 11}, {i, 1, j}]; a

Extensions

Corrected and extended by Henry Bottomley, Jan 27 2002

A068076 Number of positive integers < n with the same number of 1's in their binary expansions as n.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 0, 3, 3, 4, 1, 5, 2, 3, 0, 4, 6, 7, 4, 8, 5, 6, 1, 9, 7, 8, 2, 9, 3, 4, 0, 5, 10, 11, 10, 12, 11, 12, 5, 13, 13, 14, 6, 15, 7, 8, 1, 14, 16, 17, 9, 18, 10, 11, 2, 19, 12, 13, 3, 14, 4, 5, 0, 6, 15, 16, 20, 17, 21, 22, 15, 18, 23, 24, 16, 25, 17, 18, 6, 19, 26, 27, 19
Offset: 1

Views

Author

Dean Hickerson, Feb 16 2002

Keywords

Comments

From Rémy Sigrist, Dec 23 2018: (Start)
This sequence is related to the combinatorial number system:
- if n = Sum_{k=1..h} 2^c_k with 0 <= c_1 < c_2 < ... < c_h,
- then a(n) = Sum_{k=1..h} binomial(c_k, k) (with binomial(n, r) = 0 if n < r).
(End)

Examples

			The binary expansion of 22 (10110) has 3 1's, as do those of the 6 smaller numbers 7, 11, 13, 14, 19 and 21, so a(22)=6.
		

Crossrefs

One less than A263017.
Cf. A067587, also A000120 for numerous references.

Programs

  • Mathematica
    w[n_] := Plus@@IntegerDigits[n, 2]; a[n_] := Plus@@MapThread[Binomial, {Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]]-1, Range[w[n]]}]
  • PARI
    a(n)=my(k=hammingweight(n));sum(i=1,n-1,hammingweight(i)==k) \\ Charles R Greathouse IV, Sep 24 2012
    
  • PARI
    a(n) = my (v=0, k=0); for (c=0, oo, if (n==0, return (v), n%2, k++; if (c>=k, v+=c!/k!/(c-k)!)); n\=2) \\ Rémy Sigrist, Dec 23 2018
    
  • Python
    def a(n):
        x=bin(n)[2:].count("1")
        return sum(1 for i in range(n) if bin(i)[2:].count("1")==x) # Indranil Ghosh, May 24 2017
    
  • Python
    from math import comb
    def A068076(n):
        c, k = 0, 1
        for i,j in enumerate(bin(n)[-1:1:-1]):
            if j == '1':
                c += comb(i,k)
                k += 1
        return c # Chai Wah Wu, Mar 01 2023

Formula

a(n) = A263017(n) - 1. - Antti Karttunen, May 22 2017

Extensions

Edited by John W. Layman, Feb 20 2002

A356419 Inverse of A067576 considered as a permutation of the positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 6, 7, 12, 17, 9, 23, 13, 18, 10, 11, 30, 38, 24, 47, 31, 39, 14, 57, 48, 58, 19, 69, 25, 32, 15, 16, 68, 80, 81, 93, 94, 108, 40, 107, 123, 139, 49, 156, 59, 70, 20, 122, 174, 193, 82, 213, 95, 109, 26, 234, 124, 140, 33, 157, 41, 50, 21, 22, 138, 155, 256
Offset: 1

Views

Author

Jianing Song, Aug 06 2022

Keywords

Examples

			A067576(12) = 9, so a(9) = 12.
		

Crossrefs

Programs

  • PARI
    a(n)=my(w=hammingweight(n), p=sum(i=1, n-1, hammingweight(i)==w)); binomial(w+p+1, 2) - p
    
  • Python
    from math import comb
    def A356419(n):
        c, k = 0, 0
        for i,j in enumerate(bin(n)[-1:1:-1]):
            if j == '1':
                k += 1
                c += comb(i,k)
        return comb(n.bit_count()+c+1,2)-c # Chai Wah Wu, Mar 02 2023

Formula

Let w(n) = A000120(n) be the Hamming weight of n, p(n) = A068076(n), then a(n) = binomial(w(n)+p(n)+1, 2) - p(n).
Showing 1-3 of 3 results.