A067652 a(n) = H_n(2,3) = H_(n-1)(2,4) where H_n is the n-th hyperoperator.
4, 5, 6, 8, 16, 65536
Offset: 0
Examples
H_0(2,3) = 3+1 = 4; H_1(2,3) = 2+3 = 5; H_2(2,3) = 2*3 = 6; H_3(2,3) = 2^3 = 2*2*2 = 2*4 = H_2(2,4) = 8; H_4(2,3) = 2^^3 = 2^2^2 = 2^4 = H_3(2,4) = 16; H_5(2,3) = 2^^^3 = 2^^2^^2 = 2^^4 = H_4(2,4) = 2^2^2^2 = 2^16 = 65536; H_6(2,3) = 2^^^^3 = 2^^^2^^^2 = 2^^^4 = H_5(2,4) = 2^^2^^2^^2 = 2^^65536 = 2^2^...^2^2, with 65536 2's.
Crossrefs
Cf. A054871.
Programs
-
Haskell
f a 0 = 2 + a / f 0 1 = 0 / f 0 n = 1 / f a n = f (f (a-1) n) (n-1)
Extensions
Hyperoperator notation, new initial term, and examples by Danny Rorabaugh, Oct 14 2015
Sequence merged with H_(n)(2,4) by Natan Arie Consigli, Dec 07 2015
Comments