A067671 The prime factors of n are also prime factors of the decimal encoding (A067599) of the prime factorization of n.
4, 16, 21, 27, 36, 64, 256, 288, 648, 729, 1024, 1444, 1458, 1764, 1936, 2304, 3125, 4096, 4361, 5184, 6272, 7688, 8277, 9408, 11664, 16384, 18432, 19683, 22472, 22987, 26244, 28125, 29403, 31199, 41472, 43264, 59577, 65536, 67712, 73008
Offset: 1
Examples
21 = 3^1 * 7^1 has prime factors 3,7, which are also prime factors of the corresponding decimal encoding 3171 = 3^1 * 7^1 * 151^1.
Crossrefs
Cf. A067599.
Programs
-
Mathematica
(*f gives the decimal encoding of the prime factorization of n*) f[n_] := FromDigits[Flatten[IntegerDigits[FactorInteger[n]]]]; (*g gives the list of prime factors of n*) g[n_] := Module[{a, l, t}, a = FactorInteger[n]; l = Length[a]; Table[a[[i]][[1]], {i, 1, l}]]; (*main routine*) j[n] := Module[{l1 = g[n], l2 = g[f[n]]}, (Intersection[l1, l2] == l1)]; Select[Range[2, 10^5], j[ # ] &]