A068078
Numbers k such that (sigma(k)+sigma(k+1))/k is an integer.
Original entry on oeis.org
1, 10, 34, 136, 169, 2402, 5329, 21004, 38184, 41164, 54722, 458010, 776112, 1060802, 5026562, 10800112, 11108164, 14366402, 65676408, 87026656, 102944992, 387999360, 1488668112, 4414086384, 10499710072, 28645019964
Offset: 1
-
For[n=1, True, n++, If[Mod[DivisorSigma[1, n]+DivisorSigma[1, n+1], n]==0, Print[n]]]
A068077
Numbers k such that sigma(k) + sigma(k+1) = 4k.
Original entry on oeis.org
1, 38184, 458010, 776112, 65676408, 1488668112, 4414086384, 28645019964, 46696401675, 65466785748, 70619381496, 176151711072
Offset: 1
-
For[n=1, True, n++, If[DivisorSigma[1, n]+DivisorSigma[1, n+1]==4n, Print[n]]]
A222174
Numbers n such that sigma(n) + sigma(n-1) = 3n, where sigma(n) = sum of divisors of n (A000203).
Original entry on oeis.org
6, 34, 50, 236, 262, 386, 898, 8362, 26938, 46594, 80876, 5244548, 5462384, 17062316, 323987588, 1162300834, 1381439876
Offset: 1
Cf.
A067806 (numbers n such that sigma(n) + sigma(n+1) = 3n),
A000203.
-
For[n=1, True, n++, If[DivisorSigma[1, n]+DivisorSigma[1, n-1]==3n, Print[n]]]
-
is(n)=sigma(n)+sigma(n-1)==3*n \\ Charles R Greathouse IV, May 13 2013
Showing 1-3 of 3 results.
Comments