cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067871 Number of primes between consecutive terms of A246547 (prime powers p^k, k >= 2).

Original entry on oeis.org

2, 0, 2, 3, 0, 2, 4, 3, 4, 8, 0, 1, 8, 14, 1, 7, 7, 4, 25, 2, 15, 15, 17, 16, 10, 45, 2, 44, 20, 26, 18, 0, 2, 28, 52, 36, 42, 32, 45, 45, 47, 19, 30, 106, 36, 35, 4, 114, 28, 135, 89, 42, 87, 42, 34, 66, 192, 106, 56, 23, 39, 37, 165, 49, 37, 262, 58, 160, 22
Offset: 1

Views

Author

Jon Perry, Mar 07 2002

Keywords

Comments

Does this sequence have any terms appearing infinitely often? In particular, are {2, 5, 11, 32, 77} the only zeros? As an example, {121, 122, 123, 124, 125} is an interval containing no primes, corresponding to a(11) = 0. - Gus Wiseman, Dec 02 2024

Examples

			The first few prime powers A246547 are 4, 8, 9, 16. The first few primes are 2, 3, 5, 7, 11, 13. We have (4), 5, 7, (8), (9), 11, 13, (16) and so the sequence begins with 2, 0, 2.
The initial terms count the following sets of primes: {5,7}, {}, {11,13}, {17,19,23}, {}, {29,31}, {37,41,43,47}, ... - _Gus Wiseman_, Dec 02 2024
		

Crossrefs

For primes between nonsquarefree numbers we have A236575.
For composite instead of prime we have A378456.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A080101 counts prime powers between primes.
A246547 lists the non prime prime powers, differences A053707.
A246655 lists the prime powers not including 1, complement A361102.

Programs

  • Mathematica
    t = {}; cnt = 0; Do[If[PrimePowerQ[n], If[FactorInteger[n][[1, 2]] == 1, cnt++, AppendTo[t, cnt]; cnt = 0]], {n, 4 + 1, 30000}]; t (* T. D. Noe, May 21 2013 *)
    nn = 2^20; Differences@ Map[PrimePi, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ] (* Michael De Vlieger, Oct 26 2023 *)

Formula

a(n) = A000720(A025475(n+3)) - A000720(A025475(n+2)). - David Wasserman, Dec 20 2002

Extensions

More terms from David Wasserman, Dec 20 2002
Definition clarified by N. J. A. Sloane, Oct 27 2023